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ABSTRACT

In Ecuador, forecasts of seasonal total rainfall could mitigate both flooding and drought disasters through

warning systems if issued at useful lead time. In Ecuador, rainfall fromDecember toApril contributes most of

the annual total, and it is crucial to agricultural and water management. This study examines the predictive

skill for February–April and December–February seasonal rainfall totals using statistical and dynamical

approaches. Fields of preceding observed sea surface temperature (SST) are used as predictors for a purely

statistical prediction, and predictions of an atmospheric general circulation model (AGCM) are used as

predictors with a model output statistics correction design using canonical correlation analysis. For both

periods, results indicate considerable predictive skill in some, but not all, portions of the Andean and espe-

cially coastal regions. The skill of SST and AGCM predictors comes mainly through skillful rainfall anomaly

forecasts during significant ENSO events. Atlantic Ocean SST plays a weaker predictive role. For the si-

multaneous diagnostic highest skill is obtained using the eastern Pacific Ocean domain, and for time-lagged

forecasts highest scores are found using the global tropical ocean domain. This finding suggests that, while

eastern Pacific SST is what matters most to Ecuadorian rainfall, at sufficient lead time these local SSTs

become most effectively predicted using basinwide ENSO predictors. In Ecuador’s coastal region, and in

some parts of the Andean highlands, skill levels are sufficient for warning systems to reduce economic losses

associated with flood and drought. Accordingly, the InstitutoNacionalMeteorologia e Hidrologia of Ecuador

issues forecasts each month using methods described here—also implemented by countries of the Latin

American Observatory partnership, among other South American organizations.

1. Introduction

a. Ecuador climate

Ecuador is located in northwestern South America,

between Peru and Colombia, within 1.58N–3.48S, 75.28–
81.08W. The Galapagos Islands, approximately 1000 km

to the west, are part of Ecuador but are not included in

this study. Intersected by the equator and by the Andes

Mountains, Ecuador has a complex topography and a

variety of regional climates and subregional microcli-

mates. Four natural regions are identified: the coast, the

highlands (Andes), the Oriente (Amazon), and the

Galapagos Islands. Each region has its own climatolog-

ical rainy season: For the coast and the Galapagos it

occurs from late December through May, in the high-

lands it runs from September through April or May, and

in the Amazon it rains throughout the year (Ca~nadas

1983) with the wettest (driest) months being April–July

(September and October). Here, we examine the levels

and sources of predictive skill both for the February–

April (FMA) season, because it represents a major

portion of the main rainy seasons in all Ecuadorian re-

gions, and for the December–February (DJF) season,
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because it also brings significant rainfall in the economi-

cally critical coastal regions. In addition, the DJF season

is better timed to take advantage of the predictable ef-

fects of El Ni~no–Southern Oscillation (ENSO), because

ENSO episodes are often near or just past their peak in

DJF but may have significantly dissipated by FMA.

In an unpublished cluster-analysis study conducted

previously by the lead author, using monthly precip-

itation data for 121 stations covering Ecuador for the

1971–2010 period, four clusters were found to capture

best the seasonality of Ecuador’s rainfall. Selecting one

station to represent the typical rainfall for each cluster

(Fig. 1), clusters 1 and 2 (both in the coastal region) are

seen to have unimodal rainfall patterns with the same

wet season, with cluster 1 receiving higher rainfall

amounts. Cluster 3 (in the Amazon) receives more

uniform precipitation throughout the year, and cluster 4

(highlands) has a bimodal rainfall pattern, with less total

annual rainfall than the other clusters.

b. Interannual variability: ENSO and seasonal
forecasting

The influence of the ENSO cycle (Diaz and Markgraf

1992) on rainfall has been studied in numerous regions

of the world, and Ecuador is among those countries that

are most strongly affected by ENSO (Rossel et al. 1999).

ENSO most strongly modulates precipitation and tem-

perature patterns in the Ecuadorian coastal region. Dur-

ing El Ni~no (La Ni~na), there are higher-than-average

(lower than average) sea surface temperatures (SST)

in the central and eastern equatorial Pacific Ocean and

above-average (below average) rainfall in most of

FIG. 1. Representation of the climatological monthly rainfall distribution for each of four clusters using the stations Pichilingue (1.108S,
79.468W; cluster 1 for coast; wetter), Jos�e Joaqu�ın deOlmedo International Airport in Guayaquil (2.158S, 79.888W; cluster 2 for coast; less

wet), Edmundo Carvajal Airport in Macas (2.298S, 78.118W; cluster 3 for Amazon), and El Quinche-Pichincha (0.108S, 78.308W; cluster 4

for highlands).

1472 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 53



Ecuador west of the highlands. The flooding in the

Ecuadorian coastal region associated with El Ni~no can

cause considerable material loss and deaths, whereas

La Ni~na can result in drought, which has slower-acting

but also potentially disastrous consequences. Long-term

preventive measures, such as irrigation systems, could

be implemented in preparation for multiyear La Ni~na

episodes.

The equatorial Andes tend to experience below-

normal precipitation during El Ni~no episodes because

of an anomalous Hadley cell that inhibits convection

over the high terrain (Vuille et al. 2000a,b; Francou et al.

2004). The Andean signal is opposite to that observed

just a few hundred kilometers to the west, where El Ni~no

brings excessive rain over the normally arid coastal area

(e.g., Horel and Cornejo-Garrido 1986). The tropical

Andes also experience significant warming (cooling) of

up to 18C during El Ni~no (La Ni~na) years (Francou et al.

2004). Rainfall variability over the eastern side of the

Andes is not appreciably governed by ENSO but has

been associated with a north–south dipole-like SST

pattern over the tropical Atlantic Ocean (Vuille et al.

2000a,b).

2. Data and methods

The study is conducted in steps. First, the monthly

precipitation data for Ecuador are quality controlled,

checking for incorrect (or suspicious) readings, and the

data are subjected to a homogenization process in

which artifacts related to instrument changes and/or

station relocations are identified and the data may be

adjusted. An objective analysis is then applied to de-

rive a gridded rainfall dataset. This gridded rainfall

is the predictand data to which canonical correlation

analysis (CCA) is applied to examine the strongest

rainfall predictor patterns, based on either observed

SSTs or atmospheric general circulation model (AGCM)

predictions.

a. Data sources

Monthly gauge rainfall data at Ecuadorian stations

are provided by the National Institute of Meteorology

and Hydrology (INAMHI) of Ecuador (‘‘Meteorologi-

cal Historical Data’’; accessed in 2012). After quality

control and testing for homogeneity, the original set of

about 160 stations is narrowed to 151 stations for the

46-yr period of 1965–2010 that are eligible to be used

here (Fig. 2). We omit the twoGalapagos Island stations

because of their geographical inconvenience, resulting

in 149 stations for the study. The study uses the monthly

extended reconstructed SST (ERSSTv3) data (Smith

et al. 2008) extracted from the U.S. National Oceanic

and Atmospheric Administration/National Climatic Data

Center (NOAA/NCDC) archives. This SST dataset is

a blend from ships and buoys on a 28 3 28 grid and does

not include satellite data.

The ‘‘ECHAM4.5’’ European AGCM has hybrid

sigma-pressure vertical coordinates, T42 spectral hori-

zontal resolution (an approximately 2.88 grid), 19 verti-

cal levels, and its top at 10 hPa (Roeckner et al. 1996).

Here, we use only the mean of an ensemble of 24

members, integrated at the International Research In-

stitute for Climate and Society (IRI) and stored in its

online data library (http://iri.columbia.edu/resources/

data-library/), to form a 3-month total rainfall output.

As a predictor field, outputs from ECHAM4.5 for a se-

lected domain for the FMA or DJF rainfall seasons are

the result of a two-tiered process in which SST is initially

prescribed and used as a lower boundary condition for

the ECHAM4.5 integrations. The SST can be actually

observed, so that the ECHAM4.5 output is a diagnostic

simulation, or the SST can be predicted, so that the

ECHAM4.5 output is a true forecast. Both types of SST

prescription are used here.

FIG. 2. Distribution of rainfall stations used in this study, fol-

lowing QC and homogenization. The Galapagos stations are

omitted, resulting in 149 stations. The topography map comes

from the International Maize and Wheat Improvement Center at

the Universidad del Azuay (http://www.uazuay.edu.ec/promsa/

ecuador.htm).
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b. Quality control, homogenization, and gridding of
rainfall data

The monthly total precipitation data are subjected to

quality control (QC), a temporal homogeneity assess-

ment, and an objective analysis to create a gridded

rainfall dataset. The QC check is first performed to

identify outliers that may indicate erroneous data. Here,

outliers are defined as being at least 3 standard deviation

units away from the mean (Aguilar et al. 2009). Some

outliers are caused by human error in digitizing the data

(Zhang et al. 2005), and others are deemed correct—as in,

for example, cases of extremely high local precipitation

associated with a strong El Ni~no episode.1 To help to

determine the likelihood of an outlier being real, values

at nearby stations for the samemonth may be examined.

Entries that are considered to be uncorrectable errors

are labeled as missing.

To test for lack of homogeneity in a station time

series of monthly total precipitation, we use a software

package called RHtestsV3 that was developed by the

Climate Research Division of Environment Canada

(Wang and Feng 2013) and is available online (http://

etccdi.pacificclimate.org/software.shtml). This software

can detect and adjust for one or more changepoints

(shifts) in a data series, given the overall lag-1 autocor-

relation. It is based on the penalized maximal t test

(Wang et al. 2007) and F test (Wang 2008b), which are

embedded in a recursive testing algorithm (Wang 2008a)

assuming the lag-1 autocorrelation (Wang and Feng

2013). Additional details are found in Wang (2003).

Here, we follow the procedures detailed in the

RHtestsV3 user manual that accompanies the software

package.

The homogeneity test procedures identify some prob-

lems in our data. Because of the lack of metadata records

accompanying the rainfall data that are needed to apply

the homogenization, possible cases of inhomogeneity

(e.g., step changes in mean or variance) identified by the

algorithm must be manually examined and corrected

using one or more of 1) the climate information of

a neighboring station or stations, 2) topographical in-

formation, 3) consideration of the ENSO state, and/or 4)

the expert judgment of the authors and/or local INAMHI

experts. Several stations are eliminated because of their

moderate or severe inhomogeneity. Seventeen stations

are retained but are modified from the raw data using

the homogenization process. Figure 3 (bottom) illustrates

a step change and its correction, for the Ca~nar station in

the Andean highlands. Following the basic QC and then

homogenization, and after a decision to exclude the two

stations in the Galapagos Islands, the resulting dataset

includes 149 stations in Ecuador for the predictability

experiments (Fig. 2). Nearly all of the stations are lo-

cated in the coastal or Andean regions of the country.

The final data preparation step is application of

a Cressman objective analysis (Cressman 1959) to create

regular gridded rainfall data from the station rainfalls. It

is an iterative process in which gridpoint rainfall esti-

mates are progressively refined with each of several

passes. The analysis is also used to fill in some missing

data at stations having otherwise mostly complete data,

so that stations that originally are missing up to 25% of

their data subsequently have as little as 10% missing.

The gridding of the rainfall effectively smooths the

patterns created from the station data. This smoothing

tends to make a greater difference in the Andean

highlands, where the station patterns are ‘‘noisy’’ be-

cause of the mountainous terrain, than it does in the

coastal areas where the terrain is relatively more uni-

form. This smoothing, which carries some advantages

(e.g., noise filtering) and some disadvantages (loss of

station-level specificity), applies to all of the patterns of

predictive diagnostics and skills to be presented in the

study. The Cressman gridding process leads to a set of

roughly 150 active grid squares at 30-km resolution.

Details of the Cressman analysis, including the formulas

used, are provided in the appendix.

With the QC, homogenization, and filling-in processes,

the 149 stations and gridded data are believed to have

better homogeneity, fewer missing cases, and generally

improved quality.

c. Methods

In 2008, INAMHI implemented a local statistical

forecast system using CCA to produce probabilistic

forecasts of tercile-based precipitation categories (be-

low, near, and above normal), using fields of SST and/or

atmospheric variables as predictors. CCA is a multivar-

iate statistical method that has been widely described in

the literature (e.g., Hotelling 1936; Glahn 1968) and has

been applied to short-term seasonal climate forecasting

(Barnett andPreisendorfer 1987;Barnston 1994;Barnston

and Smith 1996; Thiaw et al. 1999; Korecha and Barnston

2007). CCA calculates linear combinations of a set of

predictors thatmaximizes relationships, in a least-squared-

error sense, to similarly calculated linear combinations of

a set of predictands. It is a multivariate regression, in-

volving patterns on both the predictor and predictand

sides. One combination of predictor coefficients and its

corresponding combination of predictand coefficients

1Very high rainfall in response toElNi~nomay create a positively

skewed distribution, in which the threshold of 3 standard deviations

would not represent as unusual of a case as it would in a Gaussian

distribution.
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constitutes one canonical mode, describing the pre-

ferred coupled spatial patterns relating predictor and

predictand. In an initial step in running the CCA, the

predictor and predictand data are separately prefiltered

using empirical orthogonal function analysis, thereby

preserving the most coherent, and presumably most

physically meaningful, modes of variability. Here, CCA

is conducted using a software package called the Cli-

mate Predictability Tool (CPT; available online from

the IRI at http://iri.columbia.edu/our-expertise/climate/

tools/cpt/), providing data that describe the cross-

validated forecast skills and diagnostics underlying the

coupled patterns and making possible forecasts both

within the historical training period and for independent

cases (e.g., for a future season).

Although use of the CCA is Ecuador’s principal

forecast method at INAMHI, dynamical input is also

examined using the approach followed by the Latin

American Observatory partnership (Mu~noz et al. 2010,

2012), including the Weather Research and Forecasting

(WRF) model (Kuo et al. 2004) with three ensemble

members and two sets of parameterizations and the fifth-

generation Pennsylvania State University–National Cen-

ter for Atmospheric Research Mesoscale Model (MM5;

Anthes and Warner 1978) with two members and a sin-

gle set of parameterizations. Together, these tools are

used to develop seasonal probabilistic rainfall forecasts

that provide climate services for the general public and

decision makers in sectors such as agriculture, water

management, energy, and health (Vaughan and Dessai

2014). Regular use of the statistical CCA represents an

advance in climate-forecasting methods in Ecuador as

compared with the previous use of more subjective

methods. Here, we document the accuracy and other

performance attributes of the forecasts produced by the

CCA, helping to fill a gap in knowledge among both the

scientific community and the general public.

The CPT software package builds a CCA-based pre-

diction model that optimizes the relationships between

the patterns in the predictor and those in Ecuador

rainfall and then verifies the goodness, or skill, of the

resulting predictions using cross validation or retroactive

FIG. 3. (top) Homogeneity test for monthly total precipitation (mm) for Sangay. No signif-

icant step change in mean or slope is detected, and therefore the time series is considered to be

homogeneous. (bottom) As in the top panel, but for Ca~nar. A statistically significant discon-

tinuity detected near 1977 is verified manually against a nearby station.
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designs to minimize artificial skill. In this study we use

cross validation with five running consecutive cases (years

for the selected season) held out, with the middle year

predicted (and later verified) as a simulated independent

case outside of the training sample (Michaelsen 1987;

Barnston and van denDool 1993). This process is repeated

so that each year in the dataset is forecast with the cli-

matological data redefined each time a new set of 5 years is

withheld. The predictor variables may be observed fields

from earlier than the forecast-targeted time, or they may

be the predictions of a global dynamical model for the

desired target time. Here, we use both approaches.

In the first case, when using observed predictor data,

there are two timing arrangements of the predictor and

predictand fields: 1) they both can be at the same time

(e.g., the same season, year by year), identifying diagnostic

relationships between predictor and predictand fields, or

2) they can be time lagged, representing a predictive re-

lationship in which the predictands occur later than the

predictors (e.g., January for the predictors and FMA for

the predictands). The diagnostic arrangement is intended

to maximize the strength of predictor–predictand rela-

tionships to represent an upper limit of predictability if

the predictors were perfectly known at an earlier time,

whereas the predictive arrangement represents what

would be possible in a practical prediction situation. The

timing arrangements used here in predicting either the

FMA or DJF season include a simultaneous (diagnostic)

design and two time-lagged (predictive) designs. For ex-

ample, in predicting FMA the predictor is for FMA in the

diagnostic design and for January or November for the

short- or long-lead predictive design, respectively.

Meanwhile, in the second case, when the predictor

field is a dynamical model prediction for a given time

(usually, but not necessarily, the same variable as the

predictand), the model forecast is for the same time as

the desired forecast season (e.g., both are for FMA). The

CCA statistically corrects systematic biases in the model

predictions as identified over the historical period of the

predictions (i.e., hindcasts) against the corresponding

observations. Because CCA is a multivariate linear re-

gression in which the model forecasts are treated as

predictors and the corresponding observations as pre-

dictands, it identifies patterns in the model predictions

that tend to be associated with patterns in the verifying

observations over the hindcast period. For example, if

themodel predictions tend to place rainfall maxima over

northern Peru that should appear over southern Ecua-

dor, CCA identifies this systematic positional error and

‘‘corrects’’ the forecasts to become more like the past

observed patterns in such cases. The dynamical model

may be a fully coupled (one tiered) ocean–atmosphere

model or an atmosphere-only model (an AGCM) run in

a two-tiered design, such as is done here for ECHAM4.5,

where the AGCM is forced using prescribed SST as the

lower boundary condition. In this two-tiered case, the

SST used to force the model could be observed SST, in

which case the model climate ‘‘forecast’’ is a simulation

or a perfect prognosis, or the SST could be actually

predicted, in which case the model forecast is a truly

time-lagged forecast.

The two cases of using the AGCM output as the

predictor are examples of model output statistics (MOS)

designs (e.g., Tippett et al. 2003, 2005), in which the

advantages of a dynamical prediction (or simulation),

such as its ability to capture nonlinear relationships, and

its statistical correction can sometimes deliver better

predictions than either an uncorrected dynamical pre-

diction or a purely statistical observational prediction

alone. Both cases also constitute downscaling, because

gridded predictor information over a large spatial scale

is used to produce more local predictions (e.g., at in-

dividual stations or at smaller grid squares than those in

the model). Such downscaling makes detailed calibra-

tions on the basis of the local predictand data history.

For the experiments using observed predictors, four

different SST predictor domains are tested: the wide

global tropics (308N–308S), the narrow global tropics

(158N–158S), the eastern tropical Pacific (58N–158S, 808–
1368W), and a substantial part of the tropical Atlantic

(208N–258S, 198–698W). These domains are designed to

isolate potential diagnostic and predictive signals com-

ing from each or several of these regions and to explore

their relative importance while excluding information

from SST regions believed to be physically irrelevant for

Ecuador (e.g., the extratropics). Large amounts of such

extraneous information may contribute to artificial skill

resulting from fitting some of the accidental variability,

even with cross validation. Within the generally more

relevant predictor domains, however, inclusion of some

unnecessary information usually does not hinder theCCA

from identifying the predictively critical portions, the

patterns for which are provided in the diagnostic output.

For the AGCM predictor experiments, the predictor do-

main is 168N–168S, 648–908W—much larger than the do-

main of Ecuador—to allow for correction of the AGCM’s

spatial biases (to be discussed further in section 3).

The main validation measures used here are 1) the

spatial distribution of the correlation between forecasts (or

simultaneous simulations) and observations and the mean

correlation2 and 2) the spatial structure and temporal

2 The overall correlation, reflecting mean skill, is computed

through averaging the Fisher Z equivalents of the gridpoint cor-

relations and then computing the anti-Fisher Z of the average.
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information revealed in the CCA loading patterns. The

second measure includes maps of the coupled predictor–

predictand patterns (the CCA modes) and the canonical

correlation coefficients showing the strength of the linear

association between the time coefficients of each.

3. Results

Results are shown first for predicting rainfall for the

FMA season and then are shown for DJF. For each

season, we first summarized results using observed

predictors in the CCA, followed by results using dy-

namical model simulations or predictions from the

ECHAM4.5 model. In all cases, seasonal total rainfall at

the 30-km grid squares over Ecuador serves as the pre-

dictand. The CCA graphics are shown to illustrate the

spatial and temporal patterns of the coupled relation-

ships between the predictor (either SST observations or

ECHAM4.5 model output) and the predictand rainfall

for the leading CCA modes for the diagnostic (simul-

taneous) or the forecast (time lagged) time arrange-

ment. A summary of the key results, including overall

skills, for the experiments performed in this study is

provided in Table 1.

a. Seasonal variation of skill for observed SST
predictors

The seasonal cycle of overall correlation between

CCA-generated rainfall predictions and the corre-

sponding observations, averaged over Ecuador’s grid-

ded network, is shown in Fig. 4. The narrow global

tropical SST predictor domain is selected because it is

found to deliver the highest skill among the four do-

mains in the largest number of cases. Skills are shown for

cases of simultaneous diagnostics (predictor and pre-

dictand both for the same season) and for predictions at

0-month lead time, in which SST is for the month im-

mediately preceding the predicted 3-month season.

Overall correlations average in the middle 0.30s for

the simultaneous diagnostics, and in the upper 0.20s for

the 0-lead predictions. Skills remain relatively constant

throughout the annual cycle, including some relatively

dry seasons in the third quarter of the year. For the FMA

and DJF seasons to be examined here, the difference in

skill between the diagnostic and the prediction is rela-

tively large. As will be discussed below, this loss of skill

with lead time may be related to uncertainty in the

persistence of the state of ENSO between November

and April, especially in terms of the SST anomaly in the

far eastern tropical Pacific.

b. Skill for FMA target period using observed SST
predictors

1) DIAGNOSTIC DESIGN

Experiments are done to determine which of the four

SST predictor domains tends to result in the greatest

cross-validated hindcast skill and shows the strongest

SST-versus-rainfall relationships. The CCA graphics

(Fig. 5) show the spatial and temporal patterns of these

coupled relationships for the leading CCA mode for

experiments using each of the four SST predictor do-

mains for the diagnostic (simultaneous) time arrange-

ment for the FMA target period.

Of the four predictor domains, the highest overall

correlation (0.35) is produced using the narrow global

tropical SST domain (see Table 1), and the eastern

tropical Pacific predictor domain results in nearly as

high a correlation (0.33). The wide global tropical do-

main produces slightly lower skill (0.29), and the tropical

Atlantic yields a much lower skill (0.11). Of the four

predictor domains, the highest canonical correlation

coefficient for the leading CCA mode (i.e., the correla-

tion between the predictor and predictand time series

shown in the middle column of Fig. 5) is 0.77, obtained

using the eastern tropical Pacific domain. The narrow

and wide tropical ocean domains result in slightly lower

coefficients, at 0.71 and 0.66, respectively. The tropical

Atlantic’s leading coefficient is 0.53. Except for the

tropical Atlantic, the spatial patterns of the leading

CCA modes describe the effects of ENSO-related SST

variability in the far eastern tropical Pacific on rainfall in

Ecuador’s coastal region.3 Meanwhile, consistent with

experience, a group of stations in the northeastern An-

des shows an opposing rainfall response (e.g., positive

anomalies with negative eastern tropical Pacific SST

anomalies). Although Pacific SSTs are not included in

FIG. 4. Overall correlation skill over Ecuador of simultaneous

diagnostic (black bars) and 0-lead forecast (gray bars), using the

narrow global ocean SST predictor domain (158N–158S).

3 Because CCA is linear, the choice of polarity (i.e., whether El

Ni~no or La Ni~na is shown, and the sign of the temporal series) is

arbitrary, and the meaning of either polarity is identical.
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the tropicalAtlantic predictor domain, the rainfall pattern

over Ecuador described by the leading Atlantic mode

(Fig. 5, bottom row) is similar to that for the other SST

predictor domains, suggesting that the near-monopole

pattern in the Atlantic SST may be a delayed effect of

ENSO in which the SST anomalies in the Atlantic mir-

ror those in the eastern Pacific.

The temporal scores (Fig. 5, middle column) show

that the FMA SST patterns of greatest relevance for

Ecuador’s rainfall are most extreme during some of the

known El Ni~no years (e.g., 1983, 1987, 1992, 1998, and

2002) but during only a few known La Ni~na–like years

(1982 and 1985). La Ni~na often results in suppressed

rainfall in the coastal region, but some ENSO-neutral

years also have below-average rainfall, and as a result the

La Ni~na years are not well differentiated. The warm and

cold ENSO years do not match the traditionally known

ENSO years closely because the far eastern tropical Pa-

cific SST anomalies do not always follow the SST anom-

alies in the east-central basin (e.g., the Ni~no-3.4 region)

that reflect the basinwide ENSO phenomenon.

The second and third CCA modes for FMA for the

diagnostic relationship using the narrow global tropical

SST domain are shown in Fig. 6. Mode 2 represents

a general secular trend toward warmer SST in most of

the tropics except for the central and eastern Pacific,

FIG. 5. CCA leading-mode loading patterns for (left) SST predictor for FMA and (right) Ecuador rainfall for FMA, and (center) the

associated time series of each (red line for SST; green line for rainfall). Shown are results for the (top) narrow tropics, (top middle) wide

tropics, (bottom middle) eastern tropical Pacific, and (bottom) tropical Atlantic SST predictor domains. The canonical correlation co-

efficients for the four rows are 0.71, 0.66, 0.77, and 0.53, respectively.
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with a mixed associated rainfall trend pattern in Ecua-

dor (e.g., a drying tendency along the northern coast).

This trend mode will appear in other experiments here.

Mode 3 is a near-monopole SST anomaly pattern asso-

ciated with a rainfall anomaly of opposite sign over the

Andes and therefore will be called the Andes mode

from here forward. The spatial distribution of cross-

validated skill of this three-mode diagnostic model over

Ecuador is shown in Fig. 6 (bottom) in terms of the

standard (Pearson) correlation and the Spearman rank

correlation. Skill is highest over the coastal area in the

west—the region with strongest ENSO involvement—

and weakens eastward into the Andes and the Amazon.

The results using only the eastern tropical Pacific SST

(Fig. 5, third row) are generally similar to those of the

narrow global tropical SST in both skill sources and

final skill level (Table 1), except that the strength of the

SST–rainfall relationship in the ENSO mode is greater

for the eastern Pacific as shown by the higher canonical

correlation coefficient (0.77 vs 0.71). The SST loading

pattern for the ENSO mode shows that SST in the far

eastern Pacific (east of 1008W) is most important for

Ecuador’s coastal-region rainfall. The fact that the

eastern tropical Pacific SST domain produces nearly the

same overall skill level as the narrow global tropical SST

domain suggests that much of the key SST information

affecting Ecuador rainfall is in the local waters. The

question then arises as to whether prediction of ENSO

itself is necessary to predict Ecuador’s coastal regional

rainfall, or to what degree the far eastern SST is de-

pendent on the basinwide ENSO phenomenon.

Diagnostic results using the wide global tropical do-

main have features that are similar to those for the

narrow SST domain (Fig. 5, row 2), but final skills are

FIG. 6. SST and rainfall loading patterns and their time series for CCA (top) mode 2 and (middle) mode 3 for the FMA rainfall

prediction experiment using simultaneous SST predictors in the narrow tropical ocean domain. (bottom) The spatial distribution of cross-

validated (left) standard and (right) rank correlation skill for the experiment. The canonical correlation coefficients for modes 2 and 3 are

0.51 and 0.35, respectively.
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slightly lower. This finding suggests that SST variability

outside of the 158N–158S zone does not provide valuable

additional information for Ecuador rainfall.

Use of the tropical Atlantic SST domain results in

a single CCA mode and markedly lower skill (Table 1).

As mentioned above, that mode (Fig. 5, bottom row)

indicates a near-monopole SST anomaly with a relative

weakness near the equator and a lack of a signal in the

Caribbean Sea, in association with rainfall anomalies of

the same sign over the coastal region of Ecuador. The

known effect of a tropicalAtlantic dipole on northeastern

Brazil (Moura and Shukla 1981; Vuille et al. 2000a) does

not appear in Ecuador’s Amazon region; the dearth of

stations in eastern Ecuador makes for difficult recogni-

tion of an Atlantic influence there, however.

2) FORECAST DESIGN

For the time-lagged forecast design using January ob-

served SSTs as the predictor (a 0-month lead prediction),

relationships between predictor and predictand patterns,

and skills, are somewhat weaker than those for the

simultaneous variables (Table 1; Fig. 4). The mean cor-

relation skill and the canonical correlation coefficient for

the leading CCA mode are highest when the narrow

global tropical ocean SST domain is used (0.23 and 0.61,

respectively). The leading canonical mode for that do-

main shows an ENSO-related SST pattern and the fa-

miliar rainfall pattern emphasizing Ecuador’s coastal

region (Fig. 7, top). These patterns, and the associated

temporal scores, are similar to those seen in the simulta-

neous diagnostic. Although a second and third mode help

in the diagnostic model, they do not enhance the pre-

diction model and are not included. The spatial distribu-

tion of skill (Fig. 7, bottom) is a weakened version of that

found for the simultaneous diagnostic (Fig. 6, bottom).

The experiment using the eastern tropical Pacific do-

main yields the same canonical correlation coefficient

(0.61) as that of the narrow global tropical domain but

yields a slightly lower skill of 0.18. The leading mode is

theENSOmode, as found in the simultaneous diagnostic,

but the spatial focus is now less strongly limited to the far

eastern basin (Fig. 8). One interpretation of this result is

FIG. 7. (top) SST and rainfall loading patterns and their time series for CCAmode 1 for the FMA rainfall prediction experiment using

January SST predictors in the narrow tropical ocean domain. (bottom) The spatial distribution of cross-validated (left) standard and

(right) rank correlation skill for the experiment. The canonical correlation coefficient for mode 1 is 0.61.
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that the far eastern SST is what ultimately matters for

Ecuador’s rainfall, but the general (basinwide) ENSO

state becomes more important at an earlier time because

it implies what SST anomaly is most likely farther east at

the forecast target time. The canonical correlation co-

efficient of the leading CCA mode of the eastern Pacific

SST domain model, which was higher than that for the

narrow global tropical SST mode model for the simulta-

neous diagnostic relationship, is no longer so for the

January predictor time (Table 1). In addition, the skill

difference between the twomodels, very slightly favoring

the narrow global tropical SST domain for the diagnostic

relationship, is increased for the January predictor time.

These findings support the idea that the basinwide ENSO

state assumes greater importance for Ecuador’s rainfall

relative to the far eastern Pacific SST anomaly alone for

time-lagged predictions, despite the likelihood that the

latter may be the most important diagnostic factor.

To help to determine when the general ENSO state

may be a better time-lagged predictor of the far eastern

tropical Pacific SST than is the eastern SST itself, lag

correlations are computed for the central Ni~no-3.4 SST

(58N–58S, 1208–1708W), for the easternNi~no-112 region

(08–108S, 908–808W), and between the two regions, as

based on 1965–2010 monthly SST data. The correlation

results are shown in Table 2 for lags ending in March

(representative of the FMA season) and January (for

the DJF season). Lag correlations of Ni~no-3.4 are far

greater than those of Ni~no-112. The simultaneous cor-

relation between the two regions is only moderate and

drops off as Ni~no-3.4 precedes Ni~no-112 by increasing

lag time. When the lag time increases sufficiently, how-

ever, there comes a point beyond which the cross-region

lag correlation exceeds the Ni~no-112 lag correlation.

For forecasts beyond that lag time, Ni~no-3.4 (representing

the basinwide ENSO) becomes a better predictor of

Ni~no-112 (and of Ecuador’s rainfall) than does Ni~no-

112 itself. Note, however, that the expected skill

of forecasts of Ni~no-112 at lead times sufficient for

Ni~no-3.4 to be a better predictor than Ni~no-112 is low

for the predictions of March.

The tropical Atlantic SST predictor domain provides

weaker predictive information than do the other domains

(in part due to the lack of stations in the Amazon region)

but delivers slightly more predictive information for the

0-lead forecast than simultaneously (overall correlation

of 0.15 vs 0.11), has a stronger leading-mode canonical

correlation (0.62 vs 0.53), and carries two CCA modes

instead of 1. The coupled patterns described by the two

modes are shown in Fig. 9. The leading mode shows

a secular trend and a rainfall anomaly pattern similar to

that found for the trend mode in other experiments (e.g.,

Fig. 7, top row) and has an Atlantic SST dipole pattern

with a strong (weak) anomaly to the north (south) of

about 108S. The secondCCAmode is similar to that found

for the simultaneous diagnostic (Fig. 5, bottom row), with

a monopole in much of the Atlantic domain. As men-

tioned earlier, the second mode may be an indirect con-

sequence of ENSO variability in the tropical Pacific. The

pattern of resulting predictive skill (not shown) resembles

that of the simultaneous diagnosis, with highest skill over

Ecuador’s coastal region.

Given that the relationships described in the simulta-

neous diagnostics are also found at lag time from January,

one might ask if they would appear also at a longer lag

time, implying potential for longer-lead forecasts. We

repeat the narrow global tropical SST domain experi-

ment using November SST as predictor for the FMA

target season (a 2-month lead time). The result is a lower

level of skill (overall correlation of 0.145) and now three

CCA modes contributing to the forecasts. The leading

mode is the general secular trend, the second mode is

ENSO related, and the third is the Andes rainfall mode

discussed earlier. The ENSO mode (mode 2; Fig. 10)

shows the familiar ENSO versus Ecuador rainfall re-

lationship. Because a typical ENSO episode is near

peak strength by November, the potential for skillful

forecasts for FMAexists if the eastern Pacific SST remains

FIG. 8. SST and rainfall loading patterns and their time series for CCAmode 1 for the FMA rainfall prediction experiment using January

SST predictors in the eastern tropical Pacific domain. The canonical correlation coefficient for mode 1 is 0.61.
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anomalous over the intervening period. The result found

here indicates that such SST anomaly endurance happens

in some cases but that it is not guaranteed; therefore, in

contrast to the shorter-lead forecast and the simultaneous

diagnostic, the ENSO mode shows a weaker canonical

correlation than the trend mode.

c. Skill for FMA target period using ECHAM4.5
model output predictor

For the dynamical model correction design we define

a predictor domain that is larger than that of the Ecuador

predictand, because the CCA would then have the op-

portunity to adjust for locational biases. The enlarged

domain would enable detection and spatial correction of

features predicted both inside and outside Ecuador—in

some cases, moving them inside the country. For the ex-

periments here, we use the predictor domain of 168N–168S,
648–908W (see Fig. 11, top-left panel).

In the ECHAM4.5 model diagnostic correction MOS

design, the model is forced using prescribed observed

SST for the target period of FMA. The model rainfall

‘‘forecast’’ is then often called a simulation, or a perfect

prognosis. In the predictive case, the model is forced

using SST that was actually predicted from an earlier

time—in this case, by the constructed-analog statistical

method (van den Dool 1994, 2007).

1) MODEL SIMULATIONS USING CONCURRENT

OBSERVED SST

In the case of the diagnostic analysis, the corrected

dynamicalmodel simulation delivers an overall correlation

value of 0.39 and a canonical correlation coefficient of 0.80

for the leading canonical mode. In the leading mode,

a spatial pattern correction over Ecuador is not apparent

(Fig. 11, top-right panel vs top-left panel), but local cali-

brations (i.e., downscaling) are noted in the details of the

rainfall prediction at grid squares that are much smaller

than those of the AGCM, of which only about three lie

over Ecuador. The large-scale rainfall predictor pattern is

clearly that of ENSO. Accordingly, the temporal scores

(Fig. 11, top-center panel) show that the simulation re-

produces the anomalous rainfall during the strongest

El Ni~no years in Ecuador fairly well. Because the model

simulation patterns of CCA modes 2 and 3 (not shown)

depend on the peculiarities of the ECHAM4.5 model

within the limited domain, the meanings of these modes

are better identified through the rainfall patterns. The

second CCA mode appears to be the Andes mode de-

scribed earlier, while the identity or physical meaning of

the third CCA mode is unknown.

The coherency of the leading CCA mode and the

resulting overall correlation skill (Fig. 11, bottom) are

stronger than those found in the diagnostic observa-

tional experiments (Table 1). This superiority of the

model simulations may be due to its successful re-

production of some of the nonlinear dynamics relating

SST to precipitation—dynamics that the linear CCA

cannot model.

2) MODEL PREDICTIONS USING PREDICTED SST

In the predictive analysis for FMA from the January

start time, the model is forced by actually predicted SST

TABLE 2. Lag correlations for the Ni~no-3.4 and Ni~no-112 SST index regions, and cross correlations between them, for theMarch target

month (representing the FMA target season examined here; top half) and for the January target month (representing the DJF target

season; bottom half). Correlations corresponding to the specific timing designs used in this study are shown in boldface type. An asterisk in

the ‘‘Nino3.4 vs Nino112’’ column indicates that the cross-region lag correlation exceeds the lag correlation for Nino112. SST data

spanning 1965–2010 are used.

Lag correlation Ni~no-3.4 vs itself Ni~no-112 vs itself Ni~no-3.4 vs Ni~no-112 Timing design in this study

Mar–Mar 1.00 1.00 0.57 Diagnostic
Feb–Mar 0.97 0.83 0.53 Partial diagnostic

Jan–Mar 0.93 0.63 0.46 0-month lead

Dec–Mar 0.90 0.51 0.42 1-month lead

Nov–Mar 0.87 0.47 0.40 2-month lead
Oct–Mar 0.84 0.42 0.38 3-month lead

Sep–Mar 0.81 0.49 0.38 4-month lead

Aug–Mar 0.78 0.33 0.35* 5-month lead

Jan–Jan 1.00 1.00 0.76 Diagnostic

Dec–Jan 0.98 0.92 0.76 Partial diagnostic

Nov–Jan 0.96 0.86 0.76 0-month lead

Oct–Jan 0.94 0.82 0.77 1-month lead

Sep–Jan 0.92 0.77 0.76 2-month lead

Aug–Jan 0.88 0.65 0.70* 3-month lead

Jul–Jan 0.84 0.57 0.60* 4-month lead

Jun–Jan 0.75 0.46 0.55* 5-month lead
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using the constructed-analog method. The corrected dy-

namical model forecast produces an overall correlation of

0.19 and a canonical correlation coefficient of 0.50 for the

leading CCA mode. These are both considerably lower

than were found in the corrected model simulation. The

spatial patterns shown in the model predictor and pre-

dictand maps for the two included CCA modes (Fig. 12)

suggest two ‘‘flavors’’ of ENSO relationship,4 which

together incorporate the general ENSO influence on

rainfall in Ecuador’s coastal region. A spatial pattern

correction between predictor and predictand maps

(over Ecuador) consists mainly of local calibrations

(Fig. 12, left vs right). The temporal scores show that

both of the leading modes help to capture the seasonal

rainfall anomalies observed during the strongest El

Ni~no years in Ecuador. The superiority of the dynami-

cal model over the observational predictor approach

seen in the simultaneous diagnostic is not present in the

0-lead predictions, however. This loss of relative skill

may be due either to the quality of the ECHAM4.5

model or to the SST forecast used to drive it, or to

both. Below, we will show evidence that the second

factor is likely.

When the lead time for the predictive analysis using

the dynamical model is increased such that the SST

forecast is from November, the predictive skill de-

creases to zero and the sole CCA mode resembles the

trend mode from the earlier experiments. Because

many ENSO episodes dissipate between December

and March and may dissipate sooner in the far eastern

tropical Pacific than farther toward the central part of

the basin, one possibility is that the constructed-analog

forecasts of SST tend do not maintain an ENSO-

related SST anomaly near the South American coast

long enough for the AGCM to respond with anomalous

FIG. 9. SST and rainfall loading patterns and their time series for CCA mode (top) 1 and (bottom) mode 2 for the FMA rainfall

prediction experiment using January SST predictors in the tropical Atlantic domain. The canonical correlation coefficients for modes 1

and 2 are 0.62 and 0.56, respectively.

4 The appearance of two ENSO flavors may be physically based

but could also be a mathematical artifact of the CCA, given the

finite data sample.
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rainfall in Ecuador. The constructed analog has had

reasonably competitive forecasts for the Ni~no-3.4 re-

gion (e.g., Barnston et al. 2012), but that region is

better predicted than the SST along the South Ameri-

can coast.

To explore the possibility of this premature ending of

the predicted eastern SST anomalies in ENSO events,

the longer-lead experiment is repeated but with the

model forecast domain extended westward to 1758W.

The result (Fig. 13) is an increased overall correlation

FIG. 10. SST and rainfall loading patterns and their time series for CCA mode 2 for the FMA rainfall prediction experiment using

November SST predictors in the narrow tropical ocean domain. The canonical correlation coefficient for mode 2 is 0.46.

FIG. 11. (top) Model-predicted and observed rainfall loading patterns and their time series for CCA mode 1 for the FMA rainfall

predictionmodel using ECHAM4.5 simulations as the predictor, forced by observed FMASST. (bottom) The spatial distribution of cross-

validated (left) standard and (right) rank correlation skill for the experiment. The canonical correlation coefficient for mode 1 is 0.80.
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skill of 0.11 and an ENSO-related second CCA mode

(with canonical correlation of 0.57). (Mode 1 is the trend

mode, with 0.60.) The predictor pattern of mode 2 shows

anomalous model-predicted rainfall over the east-

central tropical Pacific that does not extend to near the

South American coast, suggesting that the SST pre-

diction provided insufficient anomalies in the far eastern

tropical Pacific basin. This result indicates that a farther

western-extended ECHAM4.5 model prediction do-

main might have helped the skills for some of the other

seasonal forecast timings in this study, such as the

0-month lead forecast. Although CCA-based correc-

tions for dynamical model predictions have used pre-

dictor locations that are remote from the predictand

location before (e.g., Tippett et al. 2003, 2005) and can be

effective, they make the rainfall prediction more of a sta-

tistical exercise. We chose not to use such remote model

indicators here with the hope that there would be model

predictor signals close to the region being predicted.

d. Skill for DJF target period using observed SST
predictors

We explore the predictive skill potential for the DJF

season using the narrow global tropical SST predictor

domain for the observational design, because of its

highest relative skill in the FMA experiments, and the

ECHAM4.5 model correction design for simultaneous

simulations and time-lag predictions.

1) DIAGNOSTIC DESIGN

Overall correlation skill forDJF rainfall over Ecuador

using DJF observed SST is 0.35, a usefully high level

equaling that of the comparable experiment for the

FMA season (Table 1). The leading CCA mode is

ENSO related, shown in Fig. 14 (top), with a canonical

correlation of 0.73. The relationship looks similar to

that noted above for FMA. A second CCA mode (not

shown) is the one identified in the FMA experiments

FIG. 12. Model-predicted and observed rainfall loading patterns and their time series for CCA modes (top) 1 and (bottom) 2 for the

FMA rainfall prediction experiment using SST predicted from a January start time to force the ECHAM4.5 model. The canonical

correlation coefficients for modes 1 and 2 are 0.50 and 0.46, respectively.

1486 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 53



affecting precipitation in the Andes. The spatial distri-

bution of correlation skill (Fig. 14, bottom) features

maximum skill in the coastal region. In comparison with

the FMA result, DJF has a more concentrated influence

from ENSO and less influence from trend.

2) FORECAST DESIGN

With the SST predictor in November, skill levels drop

to 0.24, just incrementally higher than the January pre-

dictor for the FMA season, and three CCA modes are

used: the trend, ENSO, and the Andes rainfall modes,

with canonical correlations of 0.67, 0.54, and 0.38, re-

spectively. The leading two modes and the spatial dis-

tribution of correlation skill are shown in Fig. 15. In

comparing the skill map with those for FMA forecasts

from January, it is seen that skill is higher along the coast

for the FMA forecasts than it is for the DJF forecasts,

but some positive skill is noted farther eastward into the

Andes in DJF than in FMA. The higher coastal-region

skill during FMA may be related to the greater sensi-

tivity of rainfall to ENSOwhen the climatological SST is

closer to convective thresholds, even if ENSO pre-

dictability is slightly lower for FMA than for DJF be-

cause of uncertainty in the ENSO dissipation time.

The 2-month-lead forecast experiment using September

SST indicates a remarkable retention of overall skill

when compared with the November start time for the

FMA season, with correlation of 0.23 for DJF as com-

pared with 0.145 for FMA. The leading CCAmode is the

ENSO mode (not shown) with a canonical correlation of

0.56, and the second is the Andes rainfall mode noted

earlier. The spatial distribution of skill (Fig. 16) is similar

to that found for the shorter-lead forecast, but with

smaller magnitude. A reason for better forecasts for

DJF from September SST than for FMA forecasts from

November SSTmay be the typically greater endurance of

an ENSO episode over the former time span than the

latter one, at the end of which some ENSO episodes are

largely completed—especially in the far eastern Pacific

SST that matter most for Ecuadorian rainfall anomalies.

The appearance of this usable level of skill 2 months in

advance of the target period implies the possibility for

useful early warning well ahead of the rainy season in

Ecuador’s coastal region.

e. Skill for DJF target period using ECHAM4.5
model output predictor

The model correction MOS design is repeated for the

DJF season, first for simulations inwhich theECHAM4.5

model is driven by observed SST simultaneous with

the target period and then for forecasts in which SST

is predicted from an earlier time using the statistical

constructed-analog method.

1) MODEL SIMULATIONS USING CONCURRENT

OBSERVED SST

The diagnostic analysis with the statistical correction

of ECHAM4.5 simulations results in overall correlation

skill of 0.39 for the DJF season (Table 1), nearly identical

to the comparable experiment for FMA. The leading

CCA mode represents ENSO (Fig. 17), with a canonical

correlation of 0.78. The spatial distribution of correlation

skill (not shown) indicates high skill over Ecuador’s

coastal region and western portions of the Andes. We ask

whether the ECHAM4.5 model can deliver greater fore-

cast skill at lag times than is found for FMA, which was

seen to drop off sharply when lags were introduced.

2) MODEL PREDICTIONS USING PREDICTED SST

For the predictive analysis with the ECHAM4.5

model forced by predicted SST from a November start,

results appear similar in structure to those found for the

diagnostic analysis but with a weaker ENSO signal and

an overall correlation skill of 0.29 rather than 0.39. The

leading CCA mode (Fig. 18, top) is the ENSO mode

with canonical correlation of 0.68. Two additional CCA

FIG. 13. Model-predicted rainfall in a westward-expanded domain and observed rainfall loading patterns and their time series for CCA

mode 2 for the FMA rainfall prediction experiment using SST predicted from a November start time to force the ECHAM4.5 model. The

canonical correlation coefficient for mode 2 is 0.57.
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modes (the Andes rainfall mode and the trend mode;

not shown) add to the total predictive skill, whose spatial

pattern is shown in Fig. 18 (bottom). The overall skill is

slightly higher for the ECHAM4.5-basedmodel than for

the comparable experiment using the observational

model, whereas for the FMA season the ranking of the

twomethods is the opposite. For FMA the 0-month-lead

ECHAM4.5 forecast may have suffered from an SST

forecast that had inadequate SST anomaly amplitude

over the eastern tropical Pacific, as seen unequivocally

above in the 2-month-lead ECHAM4.5 forecast.

With a longer-lead ECHAM4.5 forecast using SST

predicted from September, some overall skill remains,

but only at the 0.11 level. An ENSO-like CCAmode and

a trend mode appear (not shown), but with weak ca-

nonical correlations (0.58 for the ENSO-like mode) and,

although the spatial distribution of skill emphasizes the

coastal region, levels are modest, with only a few squares

attaining 0.45. With this longer-lead forecast, the obser-

vational approach yields a more usable level of skill in

Ecuador. As shown above for the ECHAM4.5 forecast

for FMA, besides possible errors in the ECHAM4.5

model, the constructed-analog SST forecast may have

questionable skill in maintaining ENSO conditions in the

far eastern part of the tropical Pacific even if it maintains

them farther west toward the central Pacific.

4. Discussion and conclusions

Statistical and partially dynamical diagnostic and

forecast experiments are performed for seasonal total

rainfall anomalies in the coastal and Andean regions of

Ecuador, with a focus on the FMA season because it is

the rainy period common to these portions of the coun-

try. The DJF season is also examined because it is more

closely linked to ENSO while being economically sen-

sitive to rainfall performance. The purpose of the study is

to estimate the levels and sources of predictive skill for

Ecuador’s interannual rainfall variability, using historical

data on a 30-km grid covering 1965–2010 (46 yr).

The experiments include several predictor domain

choices, for a simultaneous diagnostic and for the

FIG. 14. (top) SST and rainfall loading patterns and their time series for CCAmode 1 for the DJF rainfall prediction experiment using

simultaneous SST predictors in the narrow tropical ocean domain. (bottom) The spatial distribution of cross-validated (left) standard and

(right) rank correlation skill levels for the experiment. The canonical correlation coefficient for mode 1 is 0.73.
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time-lagged forecasts. Experiments are conducted 1)

using observed SST predictors and 2) for the ECHAM4.5

dynamical model predictor in a MOS correction design.

For the diagnostic and predictive analyses using ob-

served SST predictors, the highest skill for the FMA

season is obtained using SST in a narrow (158N–158S)
global tropical ocean domain, and this domain is then

used for most of the subsequent experiments.

The findings of the study, summarized in Table 1,

show the spatial average of cross-validated rainfall forecast

correlation skill, and the principal sources of predictive

skill as revealed by the leading modes of the CCA. For

the ECHAM4.5 model MOS correction design, the

simulation analysis (in which observed SST is prescribed

to force the ECHAM4.5 model) produces the highest

spatially averaged correlation skill of any of the tests

performed in this study—including those from the si-

multaneous (diagnostic) SST predictor design. On the

other hand, the ECHAM4.5 forecasts (with SST forcing

predicted from earlier start times) showed lower rainfall

prediction skill than did forecasts using observed SST

from the same start time. This skill difference may be due

in part to imperfections in the ECHAM4.5 model and/or

in the constructed-analog statistical model used to predict

the SST to force ECHAM4.5. Evidence of this last pos-

sibility is seen in 2-month-lead ECHAM4.5 forecasts for

the FMA season, in which the SST forecast fails to

maintain anomalous SST in the far eastern tropical Pa-

cific during ENSO events.

In all designs, the ENSO phenomenon plays a domi-

nating role in creating skillful predictions (or simulta-

neous diagnostics) of Ecuador rainfall—particularly in the

coastal region. The central Andes and Amazon regions

have comparatively lower associations with the predictor

fields, and the complexAndes topography adds additional

‘‘noise’’ to the relationships with governing SST.Although

FIG. 15. SST and rainfall loading patterns and their time series for CCA modes (top) 1 and (middle) 2 for the DJF rainfall prediction

experiment using November SST predictors in the narrow tropical ocean domain. (bottom) The spatial distribution of cross-validated

(left) standard and (right) rank correlation skill levels for the experiment. The canonical correlation coefficients for modes 1 and 2 are 0.67

and 0.54, respectively.
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the ENSO phenomenon is instrumental in enabling di-

agnostic and predictive skill in Ecuador from the western

Andes westward, the relationship between the basinwide

ENSO phenomenon and rainfall is not direct, because the

basinwide ENSO may not necessarily include SST anom-

alies in the far eastern tropical Pacific (e.g., east of 1058W),

where the SST anomalies are essential in governing rain-

fall anomalies in western Ecuador. The importance of the

far eastern SSTs is confirmed by strong relationships in

the simultaneous diagnostic experiments using eastern

tropical Pacific SST predictors alone, versus stronger re-

lationships with the basinwide ENSO SST pattern in

time-lagged predictive mode. Thus, with increasing forecast

lead time, the far eastern Pacific SSTs become increasingly

predictable through prediction of the basinwide ENSO

rather than by prediction of the eastern Pacific SST alone.

Modes less important than ENSO for rainfall in much

of Ecuador include 1) a secular trend in much of the

global SST (but not the ENSO-related central and

eastern Pacific) and an associated complex pattern of

trend in Ecuador rainfall and 2) a near-monopole trop-

ical ocean SST anomaly associated with a rainfall

anomaly of opposite sign over the Andes. These two

additional modes provide incremental cross-validated

FIG. 16. Spatial distribution of cross-validated (left) standard and (right) rank correlation skill for the experiment

predicting the DJF rainfall using September SST predictors in the narrow tropical ocean domain.

FIG. 17. Model-predicted and observed rainfall loading patterns and their time series for CCAmode 1 for the DJF rainfall prediction

model using ECHAM4.5 simulations as the predictor, forced by observed DJF SST. The canonical correlation coefficient for mode 1

is 0.78.
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forecast skill over portions of Ecuador and are most

important in regions of the country that lack a significant

influence from ENSO.

SST in the tropical Atlantic Ocean does not contrib-

ute materially to prediction skill in this study, despite its

role in governing Amazon rainfall variability, as seen in

earlier studies (e.g., Moura and Shukla 1981; Vuille et al.

2000a,b). The dearth of rainfall predictands in eastern

Ecuador undoubtedly suppresses the appearance of an

Atlantic relationship, however. A mode relating an

anomaly in much of the tropical Atlantic SST to a like-

signed anomaly in mainly the coastal region of Ecuador

may be linked to the ENSO mode, which involves

a similar rainfall pattern in Ecuador, given that ENSO

can affect the tropical Atlantic in its later stages (e.g.,

from DJF through March–May).

Results of the experiments for DJF are generally con-

sistent with those for FMA and even slightly stronger

because ENSO episodes often remain strong through

DJF, but not necessarily FMA. Ecuadorian rainfall tends

to be greater in FMA because of the climatological

maximum in SST at that time in the eastern tropical Pa-

cific, however. Greater ENSO strength does not guaran-

tee greater SST anomaly strength in the far eastern

tropical Pacific—especially in FMA (Table 2)—which

ultimately governs Ecuador’s rainfall west of the Andes.

Overall findings suggest that in most of Ecuador’s

coastal region seasonal rainfall predictions are skillful

enough for climate services and, in particular, for

warning systems to be able to substantially reduce eco-

nomic losses associated with flood and drought. Such

favorable predictive skills are found to a lesser extent in

the Andean highlands, where there is a mixture of high

and low skills over small distances (indicated clearly in

individual station skills; not shown) because of the ir-

regular terrain. In both coastal and Andean regions,

much of the seasonal climate predictability arises as

a result of the influence of ENSO, and thus years with

the strongest ENSO conditions are expected to produce

the strongest rainfall anomaly forecasts. Within the

FIG. 18. Model-predicted and observed rainfall loading patterns and their time series for CCA mode 1 for the DJF rainfall prediction

experiment using SST predicted from a November start time to force the ECHAM4.5 model. The canonical correlation coefficient for

mode 1 is 0.68.
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subset of years without strong ENSO conditions, the

signal-to-noise ratio is lower and the predictive skill in-

dicated in a study such as this one would be lower. The

large influence of the strongest El Ni~no years in the

correlation skill is evidenced by greater values of cor-

relation than of Spearman rank correlation, as noted

particularly in Figs. 6, 14, 16, and 18.

Ecuador’s INAMHI issues forecasts eachmonth using

the methods described here and also considers dynam-

ical tools following the Latin American Observatory

partnership method (Mu~noz et al. 2010, 2012). Work in

progress involves a similar study but using high-

resolution dynamical model outputs (WRF and MM5)

for both temperature and precipitation.
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APPENDIX

Cressman Objective Analysis to Create Gridded
Data

The final data preparation step is application of an

objective analysis to create a gridded rainfall dataset

and to fill in missing data at stations having otherwise

mainly complete data. Missing data at the 149 retained

stations having no more than 25% of years missing for

a given month were filled, where possible, by using a

Cressman objective analysis (Cressman 1959). The anal-

ysis derives gridbox rainfalls by conducting several passes

of a weighted averaging of the standardized precipitation

anomalies at neighboring stations within a progressively

decreasing radius of the grid box.

Although the objective-analysis algorithm generally

follows the iterative scheme suggested by Cressman

(1959), it includes a few modifications developed for

the Observatorio Latinoamericano de Eventos Extra-

rdinarios (OLE2; Mu~noz et al. 2010, 2012). The algo-

rithm first computes standardized anomalies for each

station with respect to its own observed climatological

values. Then, three radii of influence are defined in

terms of the maximum radius from a grid box to a sta-

tion, from which a weight is assigned to the station’s

observation to estimate the gridbox value; stations

beyond the radius of influence have zero weight. In this

study, 15, 9, and 3 kmwere chosen as the successive radii

of influence. The program then interpolates the station’s

standardized anomalies to a 30-km latitude–longitude

grid for Ecuador, and the three passes are made through

the grid at the consecutively smaller radii R to increase

precision, using the correcting factor C(i, j) for each it-

eration and grid point, given by

C(i, j)5

0
BBB@
�
n

s51

WsQs

�
n

s51

Ws

1
CCCA ,

where the weights are set to zero if the station is outside

the radius of influence; otherwise, they are computed as

Ws 5
(R22 d2

s )

(R21 d2
s)
,

where ds is the distance between each station and grid-

point center. The correction factors are applied to all grid

points before the next pass is made. Some grid boxes are

not sufficiently close to stations having ample data, and

their final rainfalls remain missing. Most grid boxes in the

sparsely populated Amazon are in this missing category.

It was decided not to include the single Galapagos Island

grid square in the experiments.

The resulting 30-km grid has roughly 150 nonmissing

squares over Ecuador. (The exact number varies slightly

by month.) After the gridding process, stations origi-

nally having up to 25% missing have only up to 10%

missing. In the CPT software used, grid points with up to

10% missing values are filled according to a user-

selected algorithm. Here, we selected the option of

a multiple regression that is based on neighboring grid

points having nonmissing data.
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